Crosstalk between DNA Damage and Inflammation in the Multiple Steps of Carcinogenesis

نویسندگان

  • Shosuke Kawanishi
  • Shiho Ohnishi
  • Ning Ma
  • Yusuke Hiraku
  • Mariko Murata
چکیده

Inflammation can be induced by chronic infection, inflammatory diseases and physicochemical factors. Chronic inflammation is estimated to contribute to approximately 25% of human cancers. Under inflammatory conditions, inflammatory and epithelial cells release reactive oxygen (ROS) and nitrogen species (RNS), which are capable of causing DNA damage, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine and 8-nitroguanine. We reported that 8-nitroguanine was clearly formed at the sites of cancer induced by infectious agents including Helicobacter pylori, inflammatory diseases including Barrett's esophagus, and physicochemical factors including asbestos. DNA damage can lead to mutations and genomic instability if not properly repaired. Moreover, DNA damage response can also induce high mobility group box 1-generating inflammatory microenvironment, which is characterized by hypoxia. Hypoxia induces hypoxia-inducible factor and inducible nitric oxide synthase (iNOS), which increases the levels of intracellular RNS and ROS, resulting DNA damage in progression with poor prognosis. Furthermore, tumor-producing inflammation can induce nuclear factor-κB, resulting in iNOS-dependent DNA damage. Therefore, crosstalk between DNA damage and inflammation may play important roles in cancer development. A proposed mechanism for the crosstalk may explain why aspirin decreases the long-term risk of cancer mortality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inflammation, a Key Factor in Cancer Ambush

Inflammatory condition is the consequence of defensive mechanism of immune system against viral and bacterial infection, tissue injury, UV radiation, stress and etc. Persistently acute inflammation leads to chronic phase which is characterized by production of pro-inflammatory mediators from T cells. These molecules (e.g. IL-6, TNF-&alpha, IL-1&beta and IL-17) are mostly pleiotropic cytokines i...

متن کامل

Intermittent hypoxia reduces microglia proliferation and induces DNA damage in vitro

Objective(s):Intermittent hypoxia (IH), caused by obstructive sleep apnea (OSA), could cause hippocampus or neuron damage through multiple signaling pathways, while the underlying mechanisms are still unclear. Thus, the present study aimed to explore the effect of IH on the biological functions of microglia cells. Materials and Methods:Cell proliferation of BV2 cells after exposure to IH were o...

متن کامل

Association of Exposure to Polycyclic Aromatic Hydrocarbons with Inflammation, Oxidative DNA Damage and Renal-pulmonary Dysfunctions in Barbecue Makers in Southern Nigeria

Background: Multiple organ dysfunctions have been linked to exposure to polycyclic aromatic hydrocarbons (PAH) and oxidative stress (OS), oxidative DNA damage, and inflammatory response to PAH have been implicated. The biomarkers of OS (malondialdehyde (MDA), total plasma peroxide (TPP), total antioxidant capacity (TAC), glutathione (GSH), nitric oxide (NO), oxidative stress index (OSI)); 8-hy...

متن کامل

Chronic inflammation-associated genomic instability paves the way for human esophageal carcinogenesis

Chronic inflammation is associated with increased risk of cancer development, whereas the link between chronic inflammation and esophageal carcinogenesis is still obscure heretofore. This study aimed to investigate the relationship between chronic inflammation and DNA damage, as well as the possible role of DNA damage in esophageal carcinogenic process. Endoscopic esophageal biopsies from 109 i...

متن کامل

آنتی‌اکسیدان‌ها و برخی از روش‌های متداول اندازه گیری آن‌ها، مقاله مروری

The pathology of numerous chronic diseases, such as cardiovascular dysfunctions, atherosclerosis, inflammation, carcinogenesis, drug toxicity, diabetes mellitus, aging and neurodegenerative involves oxidative damage to cellular components. When body cells use oxygen to generate energy, free radicals are created as a consequence of adenosine triphosphate (ATP) production by the mitochondria whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017